


Learning to Think in Sets

Allison Benneth

@sqltran www.sqltran.org

CodeStock

20 April 2018



Why Sets?

• Math: set theory (Cantor, 1874)

• Rigorous proofs of set operations

• Relational model / relational algebra (Codd, 1970)

• Very stable, still basis for most RDBMS engines

• SQL Server internal operators are optimized for sets

• However, most code still operates row-by-row

• Some newer operations run in “batch” mode



RBAR

Can be external or internal



Test Harness (SQL)
declare @loopNbr int = 0;

while @loopNbr < 5

begin

declare @TestStartTime datetime2 = sysdatetime();

-- Execute test

-- ...

declare @TestEndTime datetime2 = sysdatetime();

insert dbo.ExecutionResult (TestName, StartTime, EndTime)

values (N'Test Name', @TestStartTime, @TestEndTime);

select @loopNbr += 1;

end



Test Harness (SQL) – Results
with MostRecentTestRuns as

(

select top 5 xr.ID, xr.TestName, xr.StartTime, xr.EndTime,

datediff(millisecond, xr.StartTime, xr.EndTime) RunTimeMs

from dbo.ExecutionResult xr

where xr.TestName = N'Test Name'

order by xr.StartTime desc

), Middle3Runs as

(

select xr.ID, xr.TestName, xr.StartTime, xr.EndTime, xr.RunTimeMs

from MostRecentTestRuns xr

order by xr.RunTimeMs

offset 1 row fetch next 3 rows only

)

select ID, TestName, StartTime, EndTime, RunTimeMs,

(select avg(RunTimeMs) from Middle3Runs) AvgRunTimeMs

from Middle3Runs;



Test Harness (C#)

List<TimeSpan> executionTimes = new List<TimeSpan>();

for (int executionCounter = 0; executionCounter < 5; 
executionCounter++)

{

Stopwatch clock = Stopwatch.StartNew();

// Execute test

// ...

clock.Stop();

executionTimes.Add(clock.Elapsed);

}

executionTimes.RemoveMinAndMaxValues();

double averageTimeInMilliseconds = executionTimes.Average(t => 
t.TotalMilliseconds);



Cursors and Loops

• Cursors – heavyweight objects

• Many infrequently used features enabled by default

• If necessary, declare as fast_forward read_only

• WHILE loops

• More lightweight

• However, still tend be slow (compared to 

procedural languages)



Demo

Cursors and Loops



Subqueries

select oh.OrderId,

oh.OrderDate,

oh.CustomerId,

(

select top 1 od.ProductId

from dbo.OrderDetail od

where od.OrderId = oh.OrderId

order by od.OrderDetailId

) Line1ProductId

from dbo.OrderHeader oh;

select oh.OrderId,

oh.OrderDate,

oh.CustomerId

from dbo.OrderHeader oh

where

(

select top 1 od.ProductId

from dbo.OrderDetail od

where od.OrderId = oh.OrderId

order by od.OrderDetailId

) = 4926;



Demo

Subqueries



User-Defined Functions (UDFs)

• Scalar

• Returns single value of any data type

• Call as select dbo.ScalarFunc(param1,
param2)

• Multi-Statement Table-Valued *

• Returns table variable populated by function code

• Call as select * from dbo.TableValuedFunc
(param1, param2)

* Improved performance in SQL 2017 under certain conditions
(“adaptive join processing”)

• Inline Table-Valued: single select statement



Demo

User-Defined Functions



CLR Function
public static int DataAccessFunc(int orderId)

{

using (SqlConnection connection = new SqlConnection("context connection=true"))

{

connection.Open();

string sql = @"select top 1 ProductId from dbo.OrderDetail od 

where od.OrderId = @OrderId order by OrderDetailId;";

using (SqlCommand command = new SqlCommand(sql, connection))

{

command.Parameters.Add(new SqlParameter("@OrderId", orderId));

int count = (int)command.ExecuteScalar();

return count;

}}}



Triangle Joins

select *
from dbo.PersonDim pd
where pd.CustomerStatus = 'Contact'
and
(

select top 1 pnext.CustomerStatus
from dbo.PersonDim pnext
where pnext.CustomerId = pd.CustomerId
and pnext.ValidFrom > pd.ValidFrom
order by pnext.ValidFrom

) = 'Prospect';



Triangle Joins



Windowing Functions

• ROW_NUMBER, RANK

• SUM, AVG, …

• LEAD, LAG

• OVER (partition by tbl.PartitionColumn
order by tbl.SortColumn
rows …)



Demo

Running Aggregations



C#: Singleton Inserts
sql = "insert stage.DataFile (FilePath, LastWriteTime) values (@FilePath, 
@LastWriteTime);";

foreach (FileInfo file in _files)
{

using (SqlCommand command = new SqlCommand(sql, _connection))
{

SqlParameter filePathParameter =
new SqlParameter("FilePath", file.FullName);

command.Parameters.Add(filePathParameter);

SqlParameter writeTimeParameter =
new SqlParameter("LastWriteTime", file.LastWriteTime);

writeTimeParameter.SqlDbType = SqlDbType.DateTime2;
command.Parameters.Add(writeTimeParameter);

command.ExecuteNonQuery();
}}



C#: Bulk Insert
using (SqlBulkCopy bulkCopy = new SqlBulkCopy(

connection,
SqlBulkCopyOptions.TableLock | 

SqlBulkCopyOptions.UseInternalTransaction, null))
{

bulkCopy.BulkCopyTimeout = 300;
bulkCopy.ColumnMappings.Clear();
bulkCopy.ColumnMappings.Add("FilePath", "FilePath");
bulkCopy.ColumnMappings.Add("LastWriteTime", "LastWriteTime");
bulkCopy.DestinationTableName = "stage.DataFile";
using (DataTable fileTable = CreateFileListDataTable())
{

bulkCopy.WriteToServer(fileTable);
}

}



Demo

.NET Code



Thinking in Sets: A 90° Shift

• Think about columns first, then rows

• Use CTEs to help break down processing steps

• Use CASE statements to handle IF … THEN logic

• UDFs are nice for encapsulation …

• But they can devolve into non-set processing

• Except for table-valued functions

• So SQL can involved repeated code



Case Study: Preferred Payment Method

• Legacy Windows app – Customer screen

• Customers have various products they may subscribe to; 
may have different payment methods

• Customer screen displays a “preferred” payment 
method

• Developers created scalar user-defined function

• Called once each time the form gets opened

create function dbo.fnGetPaymentPreference
(@CustomerId int) returns nvarchar(50)

as …



Case Study: Preferred Payment Method

• My task: daily sync of the preferred payment 
method for ~4 million customers to another system

select c.CustomerID,
dbo.fnGetPaymentPreference
(c.CustomerID) PreferredPaymentMethod

from dbo.Customer c;

• (0.74 ms per customer)

• Runs for 48 min 47 sec.



Case Study: Preferred Payment Method

• Re-write as set-based SQL

• UDF consists of five separate SQL statements to 

populate variables



Case Study: Preferred Payment Method

SELECT @PaymentCount1 = COUNT(Q1.ID)

FROM

(SELECT MAX(sub.ID) AS ID

FROM dbo.Subscription sub

INNER JOIN dbo.PaymentType pt

ON pt.ID = sub.PaymentTypeId

WHERE sub.CustomerId = @CustomerId

AND sub.Status = 'Active'

AND pt.type = 'Credit Card'

GROUP BY sub.PaymentTypeID, sub.ccLastFour) AS Q1



Case Study: Preferred Payment Method

SELECT @PaymentCount2 = COUNT(Q2.ID)

FROM

(SELECT MAX(sub.ID) AS ID

FROM dbo.Subscription sub

INNER JOIN MMS.dbo.PaymentType pt

ON pt.ID = sub.PaymentTypeId

WHERE sub.CustomerId = @CustomerId

AND sub.Status = 'Active'

AND pt.type <> 'Credit Card'

GROUP BY sub.PaymentTypeID) AS Q2



Case Study: Preferred Payment Method

SELECT @PaymentCount3 =

CASE WHEN (@PaymentCount1 IS NULL)

AND (@PaymentCount2 IS NULL) THEN 0

WHEN (@PaymentCount1 IS NULL)

THEN @PaymentCount2

WHEN (@PaymentCount2 IS NULL)

THEN @PaymentCount1

ELSE @PaymentCount1 + @PaymentCount2

END



Case Study: Preferred Payment Method

SELECT @TotalPaymentCount =

ISNULL(@CCPaymentCount, 0) +

ISNULL(@NonCCPaymentCount, 0);



Case Study: Preferred Payment Method

SELECT @PaymentType = MAX(CASE

WHEN pt.type = 'Credit Card' THEN 'Credit Card'

ELSE pt.name

END)

FROM dbo.Subscription sub

INNER JOIN dbo.PaymentType pt

ON pt.ID = sub.PaymentTypeID

WHERE sub.CustomerId = @CustomerId

AND so.Status = 'Active'

GROUP BY sub.CustomerId



Case Study: Preferred Payment Method

SELECT @PaymentMethod =

CASE WHEN @PaymentCount3 IS NULL THEN 'None'

WHEN @PaymentCount3 = 0 THEN 'None'

WHEN @PaymentCount3 = 1 THEN @PaymentType

ELSE 'Multiple'

END

RETURN @PaymentMethod



Case Study: Preferred Payment Method
with CCPaymentCount as

(

select Q1.CustomerId, COUNT(Q1.ID) Cnt

FROM

(SELECT sub.CustomerId, MAX(sub.ID) AS ID

FROM dbo.Subscription sub

INNER JOIN dbo.PaymentType pt

ON pt.ID = sub.PaymentTypeID

WHERE sub.CustomerId = @CustomerId

AND sub.Status = 'Active'

AND pt.type = 'Credit Card'

GROUP BY sub.CustomerId, sub.PaymentTypeID, sub.ccLastFour) AS Q1

GROUP BY Q1.CustomerId

)



Case Study: Preferred Payment Method
, NonCCPaymentCount as

(

SELECT Q2.CustomerId, COUNT(Q2.ID) Cnt

FROM

(SELECT sub.CustomerId, MAX(sub.ID) AS ID

FROM dbo.Subscription so

INNER JOIN dbo.PaymentType pt

ON pt.ID = sub.PaymentTypeID

WHERE sub.CustomerId = @CustomerId

AND sub.Status = 'Active’ 

AND pt.type <> 'Credit Card'

GROUP BY sub.CustomerId, sub.PaymentTypeID) AS Q2

GROUP BY Q2.CustomerId

)



Case Study: Preferred Payment Method

, TotalPaymentCount as

(

select coalesce(p1.CustomerId, p2.CustomerId)
CustomerId,

isnull(p1.Cnt, 0) + isnull(p2.Cnt, 0) Cnt

from CCPaymentCount ccCount

full outer join NonCCPaymentCount nonCcCount

on nonCcCount.CustomerId = ccCount.CustomerId

)



Case Study: Preferred Payment Method

, PaymentType as
(

select sub.CustomerId, MAX(CASE
WHEN pt.type = 'Credit Card' THEN 'Credit Card'
ELSE pt.name
END) TypeName

FROM dbo.Subscription so
INNER JOIN dbo.PaymentType pt

ON pt.ID = sub.PaymentTypeID
WHERE sub.CustomerId = @CustomerId
AND so.Status = 'Active'
GROUP BY sub.CustomerId

)



Case Study: Preferred Payment Method

, FinalResult as
(

select pc.CustomerId,
case when pc.Cnt = 1 then pt.TypeName
else 'Multiple’
end PaymentType

from TotalPaymentCount pc
inner join PaymentType pt
on pt.CustomerId = pc.CustomerId

)



Case Study: Preferred Payment Method

select c.CustomerId,

isnull(fr.PaymentType, 'None') PaymentType

from dbo.Customer c

left join FinalResult fr

on c.CustomerId = fr.CustomerId;



Case Study: Preferred Payment Type

• Still requires 3 passes through the data, so 

definitely room for improvements on that front

• However … this rewrite now runs in about 3 

seconds (about a 1000x improvement)

• Performance tuning is not always about squeezing 

every bit out of the query …

• It’s about “good enough”



So if sets are good, really big sets are 

better, right?

• Transaction log impacts

• Long-running transactions and clearing the log

• Log growth

• Log space reservation

• What if DB is restored to a point in the middle of the 

operation?

• Splitting up sets is a bit of an art



Other Stuff

• In-Memory OLTP changes things

• aka Hekaton, new in SQL 2014

• If natively compiled

• Loops with data access perform well

• Beware of limitations



Key Take-Aways

• Cursors are usually inefficient

• If necessary, declare as fast_forward read_only

• Still necessary for lots of admin functionality

• Pre-2012 (SQL Server), still best way to do running 

totals, etc.

• Triangle joins are evil



Key Take-Aways

• Avoid most UDFs

• Scalar and multi-statement TVFs with data access 

tend to perform poorly

• CLR with data access tends to perform poorly

• Inline TVFs generally optimize well and tend to 

perform nicely



Key Take-Aways

• Embrace row_number(): It is much more useful 

than just for counting rows

• Embrace windowing functions

• Embrace apply

• Easy way to improve many scalar UDFs

• May need to split up very large sets



Thank You

 This presentation and supporting materials can be 

found at www.sqltran.org/sets.

 Slide deck

 Scripts

 Sample database

 allison@sqltran.org • @sqltran

http://www.sqltran.org/sets



