
SQL Server

Execution Plan Primer

Allison Benneth

@sqltran www.sqltran.org

DevSpace Conference

11 October 2019

DevSpace would like to thank our sponsors

Agenda

 Why do we care about execution plans?

 What are the inputs to the optimizer?

 How does the optimizer generate a plan?

 What types of plans are there?

 What operators do we see in execution plans?

 What are some useful ways to execute a plan?

Why Care about Execution Plans?

 SQL is a declarative language

We are telling the server WHAT we want, not how

to answer the question

 The execution plan tells us HOW SQL Server is

resolving the query

 Can be very useful to identify performance issues

Why Care about Execution Plans?

 Execution plans provide front-line insight into

decisions made by the optimizer

Order in which tables are accessed

What indexes are used

How much data is expected

 “Hidden” internal operations

Why Optimize?

select per.FirstName,

per.LastName,

soh.ShipDate,

soh.TerritoryID

from Person.Person per

join Sales.Customer cust on per.BusinessEntityID = cust.CustomerID

join Sales.SalesOrderHeader soh on cust.CustomerID = soh.CustomerID

join Sales.SalesOrderDetail sod on sod.SalesOrderID = soh.SalesOrderID

join Production.Product prod on sod.ProductID = prod.ProductID

where prod.Name = 'Mountain Bottle Cage'

and soh.ShipDate >= '2014-04-01'

and soh.TerritoryID in (7, 8);

Inputs to Optimization

 The query text

 Physical specs of system (memory, cores, etc.)

 SET options in effect

 Cardinality estimates

 DB properties of referenced objects (data types,

nullability, check constraints, foreign keys,

uniqueness, etc.)

 Plan cache (optimizer bypass)

Items that are NOT optimizer inputs

 Has the data already been loaded into memory?

Cold cache is assumed

 Type of I/O subsystem

 Spinning disk vs. SSD

Cardinality Estimation

 How many rows will this part of the query generate?

 SQL Server will always generate an estimate

 May be based on statistics or just a guess (heuristics)

 Two primary versions of estimator

 SQL Server 7

 Server Server 2014

(But each later version of SQL has its own CE)

 Version used based on compatibility level, DB settings,

trace flags, query hints

Statistics

 SomeTable has 1,000,000 rows

 There is an index on SomeColumn

 How many rows will the query generate?

select ID, SomeColumn, Description

from dbo.SomeTable

where SomeColumn = 123456;

Selectivity

 It depends on how selective SomeColumn is

 Maybe every row has 123456

 Low selectivity

 Or maybe every row is unique

High selectivity

 Or somewhere in-between

Selectivity

 A high-level measure of selectivity is “density”

1

Number of distinct values

 If every row is 123456

Density = 1

 If every row is unique

Density = 0.000001 (1/1,000,000)

Let’s get more specific

select c.ID, c.FirstName, c.LastName, c.State

from dbo.Customer c

where c.LastName like ‘B%';

select c.ID, c.FirstName, c.LastName, c.State

from dbo.Customer c

where c.LastName like ‘Q%';

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

An equality query

select c.ID, c.FirstName, c.LastName, c.State

from dbo.Customer c

where c.LastName = 'Baker';

 Baker = 1193 rows

 How about this one?

select c.ID, c.FirstName, c.LastName, c.State

from dbo.Customer c

where c.LastName = 'Baldwin';

 Between Baker & Barnes: average key has 3.603 rows

 Estimate is 3.603 rows (actual is 210 rows)

 But 'Banjo' will also be estimated as 3.603 rows

(actual = 1)

Statistics: Key Points

 Based on contents of the index at some past time

 Maximum of 200 steps

 Becomes a key input to the cardinality estimator

 Update frequency based on how many rows in the

table have been modified

Through SQL 2014: 20% of rows

After SQL 2016: Default is more aggressive updating

DBA jobs to update (Ola Hallengren maintenance

solution)

https://ola.hallengren.com/

Types of Execution Plans

 Text

 XML

 Graphical

select c.State, sum(od.Quantity * od.UnitPrice) as
OrderAmount

from dbo.OrderHeader oh

join dbo.OrderDetail od on od.OrderId = oh.OrderId

join dbo.Customer c on c.CustomerID =
oh.CustomerId

where od.ProductId >= 760 and od.ProductId <= 792

group by c.State;

Types of Execution Plans – Text (Deprecated)

set showplan_text on; (less detail)

set showplan_all on; (more detail)

Types of Execution Plans - XML

set showplan_xml on;

Types of Execution Plans - Graphical

 Display Estimated Execution Plan (Ctrl-L)

Types of Execution Plans - Graphical

 Azure Data Studio

Types of Execution Plans - Graphical

 Alternate way to view graphical plans (SentryOne Plan

Explorer)

https://www.sentryone.com/plan-explorer

Types of Execution Plans – Estimated vs

Actual

 Estimated execution plans

Query is not executed

Best guess of plan that would actually be used

 In some cases cannot be generated

 Actual execution plans

Query is executed

 Some chance it may differ from estimated plan

 Includes runtime statistics (actual rows)

Actual Execution Plans

 Actual plan - text

set statistics profile on;

 Actual plan – XML

set statistics xml on;

 Actual plan – Graphical

 Include Actual Execution Plan (Ctrl-M)

Two Types of Tables

 Heaps

Not organized in any particular way

No index structure on top of data

Can still have nonclustered indexes

 Clustered Index

Data is stored in key order

Has a B-tree structure on top of the data

Can also have nonclustered indexes

The Execution Plan

 Consist of operators and connectors

 Connector (flow of data)

 Width indicates number of rows

 Plans are frequently read right-to-left, top-to-bottom

Operators

 About 70 operators possible; most are
infrequently seen

 Responsible to respond for a request for the next
row

 Common operators

Data Access (scans, seeks, lookups)

 Joins (merge, nested loops, hash)

Other (sorts, aggregations, spools, etc.)

Full list of operators

https://docs.microsoft.com/en-us/sql/relational-databases/showplan-logical-and-physical-operators-reference?view=sql-server-2016

Operators – Data Access

 Scan – Read entire contents of object

 Does not necessarily return all rows read

 May result from non-SARGable predicates

 Myth: scans are evil

Clustered Index Scan Index Scan Table Scan

Operators – Data Access

 Seek – Uses index structure to find key values

Can be a point lookup or involve a partial scan

 Cannot seek into a heap

 Myth: seeks are always good

Index SeekClustered Index Seek

Scans vs. Seeks

 SQL will tend to favor scans if the number of rows

expected is large enough that cost for a

(sequential) scan is less than the cost of random

I/O for seeks

 “Tipping point”

 Cardinality errors can cause the “wrong” access

type to be used

Operators – Data Access

 Lookup – Retrieve additional columns from table

Used when non-clustered index does not have all

the columns needed to resolve query (not covering)

 Useful when number of lookups is small

Key Lookup RID Lookup

Operators – Joins

 Three main join algorithms

Merge Join

Nested Loop Join

Hash Join

 (Also adaptive join, hybrid nested loop and hash)

Operators – Merge Join

 Requires both tables to be sorted on join columns

May introduce intermediate sort operation

But sorts are expensive

 Useful when data is already naturally sorted by

join columns

Bert Wagner video with

animation of merge join

https://bertwagner.com/2018/12/18/visualizing-merge-join-internals-and-understanding-their-implications/

Operators – Nested Loop Join

 Compare each row in top input with each row in

bottom input

 Bottom input may be static or may change

depending on value of top row

 Useful when top input is small and bottom input is

efficient to search

Bert Wagner video with

animation of loop join

https://bertwagner.com/2018/12/11/visualizing-nested-loops-joins-and-understanding-their-implications/

Operators – Hash Join

 Each top row is hashed by join columns and

bucketized

 Each bottom is hashed, looked up in hash table

 Useful when both inputs are large and unsorted

Bert Wagner video with

animation of loop join

https://bertwagner.com/2019/01/02/hash-match-join-internals/

Operators – Set Operations

 Concatenation (UNION ALL)

 Other operations (UNION, INTERSECT, EXCEPT)

handled by combinations of operators

Concatenation

Operators – Sort

 Tends to be a very expensive operation

 Highly dependent on cardinality estimate

Drive memory grant

 Watch for spills to tempdb

 Is the sort really needed?

Sort

Operators – Aggregation

 Calculate SUM, COUNT, AVG, MIN, MAX, etc.

 Hash aggregate builds hash table to find common

rows (based on grouping columns)

 Stream aggregate input must be sorted, watches

for changes in grouping columns

Hash Aggregate Stream Aggregate

Operators – SELECT

 (Or INSERT, DELETE, UPDATE, MERGE)

 Left-most pseudo-operator

 Contains properties of the execution plan as a

whole

SELECT

Operators

 And many, many more operators

Various Insert, Update, Delete, Merge operators

Clustered idx, non-clustered idx, heap

Compute Scalar, Constant Scan

 Spools (Eager vs. Lazy)

Parallelism

Distribute Streams, Repartition Streams, Gather

Streams

 Etc.

Demo

 Execution problem pain points

Resources

 Grant Fritchey, SQL Server Execution Plans, 3rd

Edition (free download)

 AdventureWorks2014 (download)

https://www.red-gate.com/simple-talk/books/sql-server-execution-plans-third-edition-by-grant-fritchey/
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-2017

Thank You

 This presentation and supporting materials can be

found at www.sqltran.org/executionplans

 Slide deck

 Scripts

 allison@sqltran.org • @sqltran

http://www.sqltran.org/executionplans

