SQL Server
Execution Plan Primer

DevSpace Conference
11 October 2019

Allison Benneth
Allison@sqltran.org
@sqltran www.sqltran.org

DevSpace would like to thank our spo

Cypress Mill Co.

ovation
systems

Agenda

» Why do we care about execution plans?
» What are the inputs to the optimizer?

» How does the optimizer generate a plan?
» What types of plans are there?
» What operators do we see in execution plans?

» What are some useful ways to execute a plan?

Why Care about Execution Plans?

» SQL is a declarative language

» We are telling the server WHAT we want, not how
to answer the question

» The execution plan tells us HOW SQL Server is
resolving the query

» Can be very useful to identify performance issues

Why Care about Execution Plans?

» Execution plans provide front-line insight into
decisions made by the optimizer

» Order in which tables are accessed
» What indexes are used

» How much data is expected

» “Hidden” internal operations

Why Optimize?

select per.FirstName,
per.LastName,
soh.ShipDate,
soh.TerritoryID

from Person.Person per
join Sales.Customer cust on per.BusinesskEntityID = cust.CustomerID
join Sales.SalesOrderHeader soh on cust.CustomerID = soh.CustomerID
join Sales.SalesOrderDetail sod on sod.SalesOrderID = soh.SalesOrderID
join Production.Product prod on sod.ProductID = prod.ProductID
where prod.Name = 'Mountain Bottle Cage'
and soh.ShipDate >= '2014-04-01'

and soh.TerritoryID in (7, 8);

Inputs to Optimization

» The query text

» Physical specs of system (memory, cores, etc.)
» SET options in effect

» Cardinality estimates

» DB properties of referenced objects (data types,
nullability, check constraints, foreign keys,
uniqueness, etc.)

» Plan cache (optimizer bypass)

ltems that are NOT optimizer inputs

» Has the data already been loaded into memory?
» Cold cache is assumed

» Type of 1/0 subsystem
» Spinning disk vs. SSD

Cardinality Estimation

» How many rows will this part of the query generate?
» SQL Server will always generate an estimate
» May be based on statistics or just a guess (heuristics)
» Two primary versions of estimator

» SQL Server 7

» Server Server 2014
» (But each later version of SQL has its own CE)

» Version used based on compatibility level, DB setti
trace flags, query hints

Statistics

» SomeTable has 1,000,000 rows
» There is an index on SomeColumn
» How many rows will the query generate?

select ID, SomeColumn, Description
from dbo.SomeTable
where SomeColumn = 123456;

Selectivity

» It depends on how selective SomeColumn is
» Maybe every row has 123456
» Low selectivity
» Or maybe every row is unique
» High selectivity
» Or somewhere in-between

Selectivity

» A high-level measure of selectivity is “density”

1
Number of distinct values

» If every row is 123456
» Density = 1
» If every row is unique
» Density = 0.000001 (1/1,000,000)

Let’s get more specific

select c.ID, c.FirstName, c.LastName, c.State

from dbo.Customer c
where c.LastName like ‘B%';

select c.ID, c.FirstName, c.LastName, c.State
from dbo.Customer c
where c.LastName like “Q%';

o

10000 20000 30000 40000 50000 60000 70000 80000 90000

T O m m U O w >

X T <« € 4 v ®m® O W o zZ T r x <

N <

An equality query

select c.ID, c.FirstName, c.LastName, c.State
from dbo.Customer c
where c.LastName = 'Baker';

Mame pdated

Rows

ide_PersonSample LastMame Feb 12019 10:25AM 1000000

All density Average Length
: 4 892512E-06 13.34736
1E-D6 17.34736

Columns
Last Name
LastMame, |10

Rows Sampled Steps

1000000

200

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS

Poyala 5736 572
Baker 4287 1153
Bames h963 597
Bamett 1633 327

» Baker = 1193 rows

1711
1138
1655
204

AVG_RANGE_ROWS
3.352426
3.578464
3.603021
8.004302

RANGE_HI_KEY RANGE_ROWS EGQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS

Poyala 5736 572 1711 3.352426
Baker 4287 1153 1158 3.573464
Bames h963 597 1655 3 603021
Bamett 1633 327 204 8.004502

» How about this one?
select c.ID, c.FirstName, c.LastName, c.State
from dbo.Customer c

where c.LastName = 'Baldwin’;

» Between Baker & Barnes: average key has 3.603 rows
» Estimate is 3.603 rows (actual is 210 rows)

» But 'Banjo’ will also be estimated as 3.603 row
(actual = 1)

Statistics: Key Points

» Based on contents of the index at some past time
» Maximum of 200 steps
» Becomes a key input to the cardinality estimator

» Update frequency based on how many rows in the
table have been modified

» Through SQL 2014: 20% of rows
» After SQL 2016: Default is more aggressive updating

» DBA jobs to update (Ola Hallengren maintenance
solution)

https://ola.hallengren.com/

Types of Execution Plans

» Text
» XML
» Graphical

select c.State, sum(od.Quantity * od.UnitPrice) as
OrderAmount

from dbo.OrderHeader oh
join dbo.OrderDetail od on od.OrderlId = oh.OrderlId

join dbo.Customer c¢ on c.CustomerID =
oh.CustomerlId

where od.ProductId >= 760 and od.ProductId <= 79
group by c.State;

Types of Execution Plans - Text (Deprecate

set showplan text on; (less detail)
set showplan all on; (more detail)

StmtText
| ——Hash Match (Aggregate, HASH: ([c] . [State]), BESILDUAL: { [CorplB] . [dbec] . [Customer] . [State] as [c] . [5t
| ——Merge Join{Inner Join, MERGE: {([c] . [CustomerID] j={[ch] . [CustomerId]), RESIDUAL: {[CorpDBE] . [db
| ——Clustered Index Scan {OBJECT: {[CorpDE]. [dbo] . [Customer] . [PE_ Customer A42AE64BSBL3AFZVA
| =——Sort (ORDER BY: ([ch] . [CustomerId] ASC))

| ——Merge Join{Inner Join, MERGE: {[ch] . [OCrderId] }={[od] . [CxrderId]), RESIDUAL: {[CorpDB]
| ——Clustered Index Scan ({CBJECT: {[CocrplB] . [dbc] . [OrderHeader] . [PE_ OrderHea C35

| ——Sort {ORDER BY: {[od] . [OCrderld] ASC))
| ——Compute Scalar (DEFINE: { [Exprl004]=CONVERT TMPLICIT (money, [CorpDB] . [dbo]
| ——Clustered Index Scan{OBJECT: {[CorpDE] . [dbo] . [OrderDetail] . [FE__ Ord

Types of Execution Plans - XML

set showplan xml on;

£ShowPlanXML wxmlns="http://schemas.microsoft.com/sglserver/2084/87/showplan™ Version="1.5" Bui
StatementText="select c.S5tate, sum(od.Quantity * od.UnitPrice) OrderAmcunti#xd;
from d
ch.0rderId&4xd;
 join dbo.Customer ¢ on c.CustomerID = ch.CustomerId&%xa;where od.P
.Statef#xd;
zoption (maxdop 1)" StatementId="1" StatementCompId="1" StatementType="SELEC}
StatementEstRows="5@.6341" SecurityPolicyApplied="false" StatementOptmLevel="FULL"™ QueryHash
CardinalityEstimationModelVersion="138"><StatementSetOptions QUOTED IDENTIFIER="true"™ ARITHA
ANSI WARNINGS="true"™ NUMERIC ROUNDABORT="false":»></StatementSetOptions:><QueryPlan NonParallel
CompileMemory="592"><MissingIndexes><MissingIndexGroup Impact="44.243"><MissingIndex Databas
Usage="INEQUALITY"><Column Name="[ProductId]" ColumnId="3"»</Column:</ColumnGroup><ColumnGro
Name="[Quantity]"” ColumnId="4"></Column><Column Name="[UnitPrice]"™ ColumnId="5"3></Column:</C
SerialRequiredMemory="2848" SerialDesiredMemory="2576"></MemoryGrantInfo><OptimizerHardwarel
EstimatedPagesCached="209699" EstimatedAvailableDegree0fParallelism="1" MaxCompileMemory="676
Match™ LogicalOp="Aggregate” EstimateRows="58.6341" EstimateI0="0" EstimateCPU="8.833272" Av
EstimateRebinds="8" EstimateRewinds="8" EstimatedExecutionMode="Row"><0OutputList><ColumnRefe
Column="5tate"></ColumnReference><ColumnReference Column="Exprl@@3":></ColumnReference></0utp
MemoryFractions»<Hash><DefinedValues><DefinedValue><ColumnReference Column="Exprl@@3":»></Colu
Distinct="8" AggType="SUM"><ScalarOperator><Identifier><ColumnReference Column="Exprl@ed”s</
DefinedValue></DefinedValues><HashKeysBuild><ColumnReference Database="[CorpDB]" Schema="[d
HashKeysBuild><BuildResidual=<ScalarOperator ScalarString="[CorpDB].[dbo].[Customer].[S5tate]
CompareOp="IS"><ScalarOperator:><Identifier><ColumnReference Database="[CorpDB]" Schema="[dbo
Identifier></ScalarOperator><ScalarOperator»><Identifier><ColumnReference Database="[CorpDB]"
ColumnR en tifiers< calar or></BuildResid =

Types of Execution Plans - Graphical

» Display Estimated Execution Plan (Ctrl-L)
File Edit View Query Project Debug Tools SOLPrompt Window Help
(@-0[B- - BNy BTRED| X T |9-C | B)
© 0 f | master - | b Bxecute Debug = V|EE[E B [T HE | EE N

et by

Hash Match “———— Merge Join —— Clustersd Index Scan (Clusters=d)
[Aggregat=] [Imner Join) [Customer] . [FE_ Customer A4AFREIREE_
Cost: 1 %

Co=t: 2 % Cos=t: 5 %

1
1]
2o ¥
e, T Merge Join | Clustersd Index 3can (Clustered)
comer 13 {Inner Jein) [OzdecHeades] . [PK_ OzdesHes_ C2905E..
- Cost: 12 % Co=s: 15 %
|
A lrl-'!
(5 ik
= === (lustered Index Scan (Clustersd]
Jozt Compute Scalar [CrderDetail] . [FE_ CrderDet_ DIBSDA_

Co=t: 1 2 Co=t:- 10 % Comt: 45 &

Types of Execution Plans - Graphical

» Azure Data Studio

[+ Run =nce @ Disconnect 2 Change Connection | master ————————————mih| & Explain
| B8 e
SEIECT —| Hash Match {:: Merge Join {:<_—__— Clustered Index Scan (Clustered)
{Rogregate) {Immer Join) [Customer] . [PK_ Customer R4REGIBER.
Cost: 1% Cost: 3% Cost: 9%

ZA

Sort
Cost:

1%

e

7tk

Merge Join
(Immer Join) | |
Costc: 12%

Clustered Index Scan

{Clustered)
[OrderHeader] . [FE__ OrderHea (3305B..

Cost: 15%
=F|
24 |— BB |
Sort Compute Scalar —
Cost: 1% Cost: 10%

Clustered Index Scan

Cost: 45%

[OrderDetzil]. [FK_ CrderDet DSBID3.

({Clustered)

Types of Execution Plans - Graphical

» Alternate way to view graphical plans (SentryOne Pla

0.0% 0.6 % 29% [= 9.3%
51 Bl 1,99 032 |5
= ¢ = =40 R
SELECT Hash Match Mzrge Join Clustered Index Scan
(Aggregatz) (Inner Join) [dbo].[Customer]
. Customer__ A4AEG4BSES3A...
0.8 % 11.7% E] 18.7 %
- oz |
Sort M Joi Clustered Index Scan
(Inner Joi [dbo].[OrderHeader]
OrderHea__C3905BCF30D2...

0.8% 9.7 %

- 199 [
o | =S5«
Sort Compute Sczla

[OrdarDetad]
[PK_ OrderDet_D389036CD30...

https://www.sentryone.com/plan-explorer

Types of Execution Plans - Estimated vs
Actual

» Estimated execution plans
» Query is not executed
» Best guess of plan that would actually be used
» In some cases cannot be generated

» Actual execution plans
» Query is executed
» Some chance it may differ from estimated plan
» Includes runtime statistics (actual rows)

Actual Execution Plans

» Actual plan - text
set statistics profile on;
» Actual plan - XML
set statistics xml on;
» Actual plan - Graphical
» Include Actual Execution Plan (Ctrl-M)
T e Py T L) T

E?EG'GHE'J*"-"IHJ"HTE'INHNQUEW@ﬁ.ﬁwﬁﬁ|'}'¢'|ﬁ| :
N | moster - | boBeate Debug = v 2B B [l @ E@p| = EE 0,

Two Types of Tables

» Heaps
» Not organized in any particular way
» No index structure on top of data
» Can still have nonclustered indexes
» Clustered Index
» Data is stored in key order
» Has a B-tree structure on top of the data
» Can also have nonclustered indexes

The Execution Plan

» Consist of operators and connectors

» Connector (flow of data)
» Width indicates number of rows

» Plans are frequently read right-to-left, top-to-bottom

I
i
£ Q¥
= HMerge Join 5 : Clustered Index Scan (Clustersad)
(Inner Jeoin) [OrderHeader] . [PK_ OrderHea C3305B.
Cost: 12 % Cost: 15 %
A
zl

_

Sort
Cost: 1 &%

Operators

» About 70 operators possible; most are
infrequently seen

» Responsible to respond for a request for the next
row

» Common operators

» Data Access (scans, seeks, lookups)

» Joins (merge, nested loops, hash)

» Other (sorts, aggregations, spools, etc.)
Full list of operators

https://docs.microsoft.com/en-us/sql/relational-databases/showplan-logical-and-physical-operators-reference?view=sql-server-2016

Operators - Data Access

» Scan - Read entire contents of object

» Does not necessarily return all rows read
» May result from non-SARGable predicates
» Myth: scans are evil

\ Clustered Index Scan Index Scan Table Sca

Operators - Data Access

» Seek - Uses index structure to find key values
» Can be a point lookup or involve a partial scan

» Cannot seek into a heap

» Myth: seeks are always good

(3]

Clustered Index Seek Index Seek

Scans vs. Seeks

» SQL will tend to favor scans if the number of rows
expected is large enough that cost for a
(sequential) scan is less than the cost of random
|/0 for seeks

» “Tipping point”

» Cardinality errors can cause the “wrong” access
type to be used

Operators - Data Access

» Lookup - Retrieve additional columns from table

» Used when non-clustered index does not have all
the columns needed to resolve query (not covering)

» Useful when number of lookups is small

Key Lookup RID Lookup

Operators - Joins

» Three main join algorithms
» Merge Join
» Nested Loop Join
» Hash Join

» (Also adaptive join, hybrid nested loop and hash)

Operators - Merge Join

» Requires both tables to be sorted on join columns
» May introduce intermediate sort operation
» But sorts are expensive

» Useful when data is already naturally sorted by
join columns

=g

Bert Wagner video with
animation of merge join

https://bertwagner.com/2018/12/18/visualizing-merge-join-internals-and-understanding-their-implications/

Operators - Nested Loop Join

» Compare each row in top input with each row in
bottom input

» Bottom input may be static or may change
depending on value of top row

» Useful when top input is small and bottom input is
efficient to search

Bert Wagner video with

E animation of loop join

https://bertwagner.com/2018/12/11/visualizing-nested-loops-joins-and-understanding-their-implications/

Operators - Hash Join

» Each top row is hashed by join columns and
bucketized

» Each bottom is hashed, looked up in hash table
» Useful when both inputs are large and unsorted

Bert Wagner video with
animation of loop join

https://bertwagner.com/2019/01/02/hash-match-join-internals/

Operators - Set Operations

» Concatenation (UNION ALL)

» Other operations (UNION, INTERSECT, EXCEPT)
handled by combinations of operators

Concatenation

Operators - Sort

» Tends to be a very expensive operation

» Highly dependent on cardinality estimate
» Drive memory grant

» Watch for spills to tempdb
» Is the sort really needed?

Operators - Aggregation

» Calculate SUM, COUNT, AVG, MIN, MAX, etc.

» Hash aggregate builds hash table to find common
rows (based on grouping columns)

» Stream aggregate input must be sorted, watches
for changes in grouping columns

JE
I
JE

Hash Aggregate Stream Aggregate

Operators - SELECT

» (Or INSERT, DELETE, UPDATE, MERGE)
» Left-most pseudo-operator

» Contains properties of the execution plan as a
whole

==X

SELECT

Operators

» And many, many more operators
» Various Insert, Update, Delete, Merge operators
» Clustered idx, non-clustered idx, heap
» Compute Scalar, Constant Scan
» Spools (Eager vs. Lazy)
» Parallelism

» Distribute Streams, Repartition Streams, Gather
Streams

» Etc.

Demo

» Execution problem pain points

D ODDD DDRD DO LD

B000ROD0ORARBJRCY DROB
D00RRLOKRKDLYRVRAOT DRD
Q0RO E00RLBDRNL YU BB
BROC— 20000 BB

Resources

» Grant Fritchey, SQL Server Execution Plans, 3rd
Edition (free download)

» AdventureWorks2014 (download)

https://www.red-gate.com/simple-talk/books/sql-server-execution-plans-third-edition-by-grant-fritchey/
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-2017

Thank You

» This presentation and supporting materials can be
found at www.sqltran.org/executionplans

» Slide deck
» Scripts

» allison@sqgltran.org e« @sqltran

http://www.sqltran.org/executionplans

