
Seven Awesome SQL

Server Features
That You Can Use for Free

Allison Benneth

@SQLTran www.sqltran.org

SQL Server Editions

SQL2005 SQL2008 SQL2008R2 SQL2012 SQL2014 SQL2016

Enterprise

Developer *

Datacenter

Business Intelligence

Standard

Workgroup

Web

Express with Advanced Services

Express

LocalDB

* Free starting with SQL Server 2016

2016 Was a Game-Changer!

 A lot changed in 2016

 March 7 – Microsoft announces SQL Server will be

available on Linux in mid-2017

 June 1 – SQL Server 2016 is released

 November 16 – Service Pack 1 is released

Many formerly Enterprise Edition features are moved into

lower SKUs

 Including Express Edition and LocalDB!

 Differentiation by scale, not by feature

https://blogs.microsoft.com/blog/2016/03/07/announcing-sql-server-on-linux/#sm.000018k6kgaqed3qrma1tvpatheun
https://blogs.msdn.microsoft.com/sqlreleaseservices/sql-server-2016-service-pack-1-sp1-released/

New Features in Express Edition (2016)

 SQL 2016 RTM

 Stretch DB

 Query Store

 JSON support

 Temporal tables

 T-SQL additions

 DROP IF EXISTS

 AT TIME ZONE

 SESSION_CONTEXT

 STRING_SPLIT

 SQL 2016 Service

Pack 1

 In-Memory Tables

 Columnstore

 Snapshots

 Partitioning

 Data compression

 Row-level security

 Always Encrypted

 Dynamic data masking

 Auditing

 Polybase (compute

node)

 Additional

FILESTREAM support

 DBCC CLONEDATABASE

 Management Studio –

now a separate

install … and free to

use

All of these features, of course, are in more advanced editions as your application grows!

Limitations on Express Edition

 Performance

 One CPU / four cores – per instance

 1.4 GB RAM (buffer pool) – per instance

 350 MB for in-memory tables – per instance, not counted toward buffer

pool limit – single-threaded only

 350 MB for columnstore data – per database, not counted toward buffer

pool limit – single-threaded only

 Functionality

 10 GB per database

 No SQL Agent (service installed, but cannot be started)

 Schedule backups and other jobs via another SQL Agent or OS scheduler

(sqlcmd or PowerShell)

Limitations on Express Edition

 Overcomeable Limitations

 No TCP/IP by default; be sure to enable it

 Feature Limitations

 Availability Groups

 Mirroring

 Polybase (head node)

 No SSIS, SSAS, R Server, etc.

 SSRS with “Express with Advanced Services”

 Beware! Mandatory telemetry

Cumulative Updates

 Bug fixes specific to a SQL Server version and service pack

 Typically issued by Microsoft about every two months

 Are “cumulative,” so only need the most recent update

 Since SP1 contained new functionality, particularly import

to apply

 Recent CUs go through more rigorous testing; MS

recommends applying them by default

 Current CU for SQL Server 2016 SP1 is CU2 (March 22,

2017)

SQL Server 2017

 Until April 19, simply referred to as vNext

 Current on CTP 2.0 (6th preview version)

 (SQL Server 2016 had 10 preview versions)

 No release date announced as of yet

 No edition announcements as of yet

 New features: availability on Linux, Python

integration, adaptive query plans, graph

databases

SQL Server Features (Speed Dating)

 Security

 Row-Level Security

 Always Encrypted

 Utility

 Snapshots

 Temporal Tables

 Performance

 Columnstore Indexes

 Partitioning

 In-Memory OLTP (Hekaton)

Row-Level Security

 Powerful and flexible way to control who can view or

modify data at the row-level grain

 Access is controlled by a user-defined function that is

applied to the table’s security

 Non-qualifying rows are silently blocked

 Select predicate – controls read access to the row

 Block predicate – controls modification to the row (either

before or after the modification)

Row-Level Security

DEMO

SQL Server Features (Speed Dating)

 Security

 Row-Level Security

 Always Encrypted

 Utility

 Snapshots

 Temporal Tables

 Performance

 Columnstore Indexes

 Partitioning

 In-Memory OLTP (Hekaton)

Always Encrypted

 Applies at the column level

 SQL Server box never sees data in unencrypted

form (both at-rest and in-transit)

 Encrypted columns are stored (and transmitted) as

varbinary behind the scenes

 Certificate is generated on client machine and

shared with other clients

Always Encrypted

 Encryption can be random or deterministic

(required if column is indexed or used in a join)

 Requires a change to the connection string in the

application

 Column Encryption Setting=enabled

 Queries must be parameterized

Always Encrypted in Action

select EmployeeID,
Salary
from Employees
where SSN = '123-00-

4567';
Library

(ADO.NET)

select EmployeeID,
Salary
from Employees
where SSN =

0xec7e5ed8...;

EmployeeID Salary

173 0xf0a72bcc

EmployeeID Salary

173 73056.00

Always Encrypted - Cons

 Data size bloat, especially for smaller data types

 Adds considerable difficulty troubleshooting in tools

like SSMS

 String columns must have a BIN collation – they won’t

sort by traditional SQL rules

 Extra round trips to determine metadata, retrieve keys

SQL Server Features (Speed Dating)

 Security

 Row-Level Security

 Always Encrypted

 Utility

 Snapshots

 Temporal Tables

 Performance

 Columnstore Indexes

 Partitioning

 In-Memory OLTP (Hekaton)

Snapshots

 Provides a transactionally consistent, read-only point-in-time

view of a database

 Can take multiple snapshots at different points on the same

database

 Useful for stable reporting against a transactional system

 Can be used to revert to a previous database state

 Failed upgrade / administrative tasks

 QA cycles

 Resources required dependent mostly on how much underlying

database is changed

 Absolutely, positively not a substitute for proper backups!

Snapshots

DEMO

SQL Server Features (Speed Dating)

 Security

 Row-Level Security

 Always Encrypted

 Utility

 Snapshots

 Temporal Tables

 Performance

 Columnstore Indexes

 Partitioning

 In-Memory OLTP (Hekaton)

Temporal Tables

 Most applications / databases inherently contain a

temporal element

 If temporal components are tracked, traditionally

done with triggers or change detection

 Temporal tables handle tracking automatically

 Allows greatly simplified point-in-time querying

 Requires additional columns on source table and

requires history table

 Schema changes in source table are reflected in the

history table

Temporal Tables

DEMO

Temporal Tables

Temporal querying: FROM TableName FOR SYSTEM_TIME _____

Point in time AS OF '2017-02-06 11:30:00'

Full history ALL

Between (‘start’ < EndTime AND ‘end’

>= StartTime)

BETWEEN '2017-01-11 18:55:04'
AND '2017-05-06 11:30:00'

From (‘start’ < EndTime AND ‘end’ >

StartTime)

FROM '2017-01-11 18:55:04' TO
'2017-05-06 11:30:00'

Contained in (‘start’ <= EndTime AND

‘end’ >= StartTime)

CONTAINED IN ('2017-01-11
18:55:04', '2017-05-06
11:30:00')

Temporal Tables

 Performance

 Insert operations – no difference than non-temporal

tables

 Update operations – overhead due to writes to both

source and history tables

 Read operations – Default clustered index on history

table usually not helpful – consider changing it

Temporal Tables

 Beware of v1 limitations!

 Dropping a column in the source table will drop the

column in the history table – all history is lost!

 Cannot add a non-nullable column to the source table

 Pruning history is an offline operation

SQL Server Features (Speed Dating)

 Security

 Row-Level Security

 Always Encrypted

 Utility

 Snapshots

 Temporal Tables

 Performance

 Columnstore Indexes

 Partitioning

 In-Memory OLTP (Hekaton)

Columnstore Indexes

 Traditional indexes are row-based copies of selected

columns in table

 Columnstore turns this around and orders the index by

column

 Can be the entire table (clustered index) or a subset

of columns (nonclustered index)

 Can be combined with row-based indexes

Columnstore Indexes

 Previous versions of SQL Server imposed limitations, but

SQL Server 2016 removes many of these limits

 Particularly useful for warehouse / analytic queries

 However performance usually degrades for OLTP workloads

 Much of performance benefit derives from high

compression of columnstore (typically 20x or more)

Columnstore Indexes

DEMO

SQL Server Features (Speed Dating)

 Security

 Row-Level Security

 Always Encrypted

 Utility

 Snapshots

 Temporal Tables

 Performance

 Columnstore Indexes

 Partitioning

 In-Memory OLTP (Hekaton)

Partitioning

 Spread table data across multiple B-trees

 For example, place older data on slower, cheaper storage

 Usually for very large data sets, but has other purposes

 Separation defined by a “partitioning function” and a

“partitioning scheme”

 Range LEFT (think of as >=)

 Range RIGHT (think of as <)

 Another use: combine with temporal tables to enable

quick archival capability

Traditional SQL Server Index

Root

Index Index Index Index

Leaf Leaf Leaf Leaf

Partitioned SQL Server Index

- 100 201 300 301 101 200

Partitioning

DEMO

SQL Server Features (Speed Dating)

 Security

 Row-Level Security

 Always Encrypted

 Utility

 Snapshots

 Temporal Tables

 Performance

 Columnstore Indexes

 Partitioning

 In-Memory OLTP (Hekaton)

In-Memory OLTP

 First introduced in SQL Server 2014

 Stores data in memory

 Lock-free structures

Multi-version concurrency control (optimistic)

 Fully ACID compliant (durability optional)

 Designed for OLTP workloads

 Can yield 10-20x performance boost

 Native compilation of stored procedures

In-Memory OLTP

DEMO

In-Memory OLTP

 Need to give a table hint such as with

(snapshot) when used inside an explicit

transaction

Or, set database option
memory_optimized_elevate_to_snapshot

 Error handling considerations

 Entire transaction will roll back if validation phase

fails (optimistic concurrency assumptions failure)

Resources

 SQL Server 2016 Express Edition download
www.microsoft.com/en-us/sql-server/sql-server-editions-express

 Companion blog page to this session

www.sqltran.org/7features

Allison Benneth

@SQLTran www.sqltran.org

